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1. LEG 195 SUMMARY1

Shipboard Scientific Party2

INTRODUCTION

Ocean Drilling Program Leg 195 had three distinct objectives. The
first segment of the leg was devoted to coring and setting a long-term
geochemical observatory at the summit of South Chamorro Seamount
(Site 1200), which is a serpentine mud volcano on the forearc of the
Mariana subduction system (Fig. F1). The second segment was devoted
to coring and casing a hole in the Philippine Sea abyssal seafloor (Site
1201) and the installation of broadband seismometers for a long-term
subseafloor borehole observatory. During the third segment, an array of
advanced piston corer/extended core barrel holes was cored at Site 1202
under the Kuroshio Current in the Okinawa Trough off the island of
Taiwan.

The drilling and observatory installation program at South
Chamorro Seamount was designed to (1) examine the processes of mass
transport and geochemical cycling in the subduction zones and forearcs
of nonaccretionary convergent margins; (2) ascertain the spatial vari-
ability of slab-related fluids in the forearc environment as a means of
tracing dehydration, decarbonation, and water-rock reactions in sub-
duction and suprasubduction zone environments; (3) study the meta-
morphic and tectonic history of nonaccretionary forearc regions; (4) in-
vestigate the physical properties of the subduction zone as controls over
dehydration reactions and seismicity; and (5) investigate biological ac-
tivity associated with subduction zone material from great depth.

The seismic observatory in the Philippine Sea is an important com-
ponent of the International Ocean Network seismometer net. By filling
a large gap in the global seismic station grid, the observatory will help
increase the resolution of global tomographic studies, which have revo-
lutionized our understanding of mantle dynamics and structure. More-
over, the observatory will allow more precise study of the seismic struc-
ture of the crust and upper mantle of the Philippine plate, as well as
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better resolution of earthquake locations and mechanisms in the north-
west Pacific subduction zone.

Drilling at Site 1201 was also designed to provide more precise base-
ment age constraints for models of backarc spreading in the Philippine
Sea as well as high-quality sediment sections that could be used to re-
construct the history of microplate motion, climate change, eolian
transport, and arc volcanism in the region.

Drilling at Site 1202 was designed to obtain a high-resolution sedi-
ment record under the Kuroshio Current to study global climate
change, sea level fluctuation, local tectonic development, and terrestrial
environmental changes in East Asia over the past 2 m.y. The Okinawa
Trough is one of the few locations in the Pacific where the seafloor un-
der the Kuroshio Current lies above the carbonate compensation depth,
allowing the calcareous microfossil record to be preserved, and it is the
only location with a high sedimentation rate, allowing high-resolution
studies.

SITE 1200: SERPENTINE MUD VOLCANO
GEOCHEMICAL OBSERVATORY

South Chamorro Seamount, Mariana Forearc

Geologic processes at convergent plate margins control geochemical
cycling, seismicity, and deep biosphere activity within subduction
zones. The study of input into a convergent plate margin by sampling
the downgoing plate provides the geochemical reference necessary to
learn what factors influence the production of suprasubduction zone
crust and mantle in these environments. The study of the output in
terms of magma and volatiles in volcanic arcs and backarc basin set-
tings constrains processes at work deep in the subduction zone, but
these studies are incomplete without an understanding of the through-
put, the nature of geochemical cycling that takes place between the
time the subducting plate enters the trench and the time it reaches the
zone of magma genesis beneath the arc. Tectonically induced circula-
tion of fluids at convergent margins is a critical element in the under-
standing of chemical transport and cycling within convergent plate
margins and, ultimately, in understanding global mass balance (e.g.,
COSOD II, 1987; Langseth et al., 1988; Kulm and Suess, 1990; Langseth
and Moore, 1990; Martin et al., 1991). In the shallow to intermediate
suprasubduction zone region, dehydration reactions release pore fluids
from bound volatiles in oceanic sediments and basalts of the down-
going plate (Fryer and Fryer, 1987; Peacock, 1987, 1990; Mottl, 1992;
Liu et al., 1996). Fluid production and transport affect the thermal re-
gime of the convergent margin, metamorphism in the suprasubduction
zone region, diagenesis in forearc sediments, biological activity in the
region, and, ultimately, the composition of arc and backarc magmas.
Furthermore, these fluids, their metamorphic effects, and the tempera-
ture and pressure conditions in the contact region between the plates
(the décollement) affect the physical properties of the subduction zone,
where most major earthquakes occur.

The discovery of Earth’s deep biosphere is recognized as one of the
most outstanding breakthroughs in the biological sciences. The extent
of this biosphere is currently unknown, but we are becoming increas-
ingly aware that life has persisted in environments ranging from active
hydrothermal systems on mid-ocean ridges to deep ocean sediments,
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but so far no detailed investigations have been made of the potential
for interaction of the deep biosphere with processes active in conver-
gent plate margins.

Determining unequivocally the composition of slab-derived fluids
and their influences over the physical properties of the subduction
zone, biological activity, or geochemical cycling in convergent margins
requires direct sampling of the décollement region. To date, studies of
décollement materials, mass fluxes, and geochemical interchanges have
been based almost exclusively on data from drill cores taken in accre-
tionary convergent margins (e.g., Kastner et al., 1993; Carson and West-
brook, 1995; Maltman et al., 1997). Large wedges of accreted sediment
bury the underlying crystalline basement, making it inaccessible to
drilling, and the wedges interact with slab-derived fluids, altering the
original slab signal. The dehydration reactions and metamorphic inter-
changes in intermediate and deeper parts of the décollements have not
been studied in these margins. By contrast, nonaccretionary convergent
margins permit direct access to the crystalline basement and produce a
more pristine slab-fluid signature for two reasons: the fluids do not suf-
fer interaction with a thick accretionary sediment wedge, and they pass
through fault zones that have already experienced water-rock interac-
tions, thus minimizing interaction with subsequently escaping fluids.
Regardless of the type of margin studied, the deeper décollement region
is directly inaccessible with current or even foreseeable ocean drilling
technologies. A locality is needed where some natural process brings
materials from great depths directly to the surface. The Mariana conver-
gent margin provides precisely the sort of environment needed.

Geologic Setting

The Mariana convergent plate margin system is nonaccretionary, and
the forearc between the trench and the arc is pervasively faulted. It con-
tains numerous large (30 km diameter and 2 km high) mud volcanoes
(Fryer and Fryer, 1987; Fryer, 1992, 1996) (Fig. F2). The mud volcanoes
are composed principally of unconsolidated flows of serpentine mud
with clasts consisting predominantly of serpentinized mantle peridotite
(Fryer, Pearce, Stokking, et al., 1990). Some have also brought up blue-
schist materials (Maekawa et al., 1995; Fryer and Todd, 1999). Faulting
of the forearc to great depth produces fault gouge that when mixed
with slab-derived fluids generates a thick gravitationally unstable slurry
of mud and rock that rises in conduits along the fault plane to the sea-
floor (Fig. F3) (Fryer, 1992, 1996). These mud volcanoes are our most di-
rect route to the décollement and, episodically, through protrusion
events, open a window that provides a view of processes and conditions
at depths as deep as 35 km beneath the forearc.

Prior to Leg 195, only one other active serpentine mud volcano
(Conical Seamount) (see Fig. F2) had ever been sampled by drilling
(Fryer, Pearce, Stokking, et al., 1990). Little was then known of either
the processes that formed such seamounts, their distribution, and their
relation to the tectonics of the forearc region or of the potential for un-
derstanding the deeper forearc processes they reflect. Recent advances
in the understanding of the structure and tectonic evolution of non-
accretionary forearcs, the nature of geochemical cycling within them,
and the various active thermal, hydrologic, metamorphic, and biologi-
cal processes involved in the formation of mud volcanoes permitted the
planning of comprehensive studies of the intermediate-depth processes
occurring within the “subduction factory.” By revisiting descriptions of

 8
00

0

 8000

 8000

 8
00

0

 60
00

 6
00

0

 6
00

0

 4000

 4000

 4
00

0

 4
00

0

 4000

40
00

 4000

 4000

 4
00

0

 2000

 2
00

0

 2000

 2
00

0

 2000

 2000

 2000

100 km

Guam

Pagan

Saipan

144°E 146° 148°

 6000

Conical Seamount

Pacman Seamount

Big Blue Seamount

Turquoise Seamount

Celestial Seamount

Peacock Seamount

Blue Moon Seamount

North Chamorro Seamount

South Chamorro Seamount

20°
N

18°

16°

14°

12°

F2. Bathymetric map of the south-
ern Mariana forearc, p. 34.

100 50 0

D
ep

th
 (

km
)

Low- to
 intermediate-grade metamorphism, 

compaction, 

dessication,

diagenetic reactions

Bluesch
ist 

metamorphism
,

deca
rbonatio

n,

dehyd
ratio

n

reactio
ns

Horst block
Horst block

Distance from trench axis (km)

Graben

Pacific plate Seamount

Forearc sediment

Sub
du

cte
d seamount

Dire
ction of subduction

Déco
llement Serpentine mud volcano

Horizontal motion toward
Horizontal motion away

Legend

Conduit of mud volcano

Pods of blueschist

Dip-slip motion

0

10

20

F3. Schematic cross section 
through the Mariana system, 
p. 35.



SHIPBOARD SCIENTIFIC PARTY
CHAPTER 1, LEG 195 SUMMARY 4
serpentine melanges and “sedimentary” serpentinite terranes from past
literature (Lockwood, 1972), we now realize that serpentine mud volca-
nism in convergent margin settings is not merely a local curiosity of the
Mariana system but occurs worldwide.

Site 1200 is located on a 200-m-high summit knoll on South
Chamorro Seamount at 13°47′N, 146°00′E in a water depth of 2910 m,
~125 km east of Guam in the western Pacific Ocean. It lies 85 km from
the trench, where the depth to the downgoing slab is ~26.5 km, based
on studies by Isacks and Barazangi (1977). Pore fluids collected in grav-
ity cores from this seamount exhibit a strong slab signal. It is the only
known site of active blueschist mud volcanism in the world and sup-
ports the only documented megafaunal assemblages associated with
serpentine/blueschist mud volcanism (Fryer and Mottl, 1997).

Side-scan surveys of this seamount (Fig. F4) show that the southeast-
ern sector of the edifice has collapsed, and debris flows of serpentine
material (dredged in 1981 and observed during Shinkai 6500 dives in
1995) blanket the inner slope of the trench from the summit of the sea-
mount to the trench axis. The summit knoll sits at the apex of the sec-
tor collapse, and its formation was most likely initiated in response to
the collapse. Submersible observations show that the knoll’s surface is
broken into uplifted slabs of cohesive serpentine mud (Fryer, 1996) sep-
arated by meter-deep fissures with crosscutting orientations. Medium
blue-green to dark blue serpentine mud and clasts of metamorphosed
rocks are exposed. Low-temperature springs in the fissures support a
vigorous biological community of mussels, gastropods, worm tubes,
and galatheid crabs (Fryer and Mottl, 1997). The mussels are likely of
the genus Bathymodiolus, one which contains methylotrophic sym-
bionts in its gills and requires high ambient concentrations of methane
in its feeding source (Fryer and Mottl, 1997). The pore fluid composi-
tion profiles and the presence of a vigorous biological community at
the surface suggest that the summit knoll is a currently active seep re-
gion. The interior of the seamount shows little structure on six-channel
seismic reflection profiles (Fryer and Mottl, 1997) (Fig. F5). This sea-
mount is likely an active serpentine mud volcano similar to Conical
Seamount, drilled during Leg 125 (Sites 778–780), and thus provides an
excellent drill target for studies of the active processes of these mud vol-
canoes. It has the strongest slab signature in pore fluids from among
the seamounts sampled in 1997 and is comparable to Conical Sea-
mount in the strength of its slab signal.

Scientific Objectives

The overall objectives of drilling at South Chamorro Seamount were
to (1) study geochemical cycling and mass transport in the subduction
zones and forearcs of nonaccretionary convergent margins; (2) deter-
mine the spatial variability of slab-related fluids within the forearc envi-
ronment as a means of tracing dehydration, decarbonation, and water-
rock reactions both in the subduction zone and the overlying supra-
subduction zone environments; (3) study the metamorphic and tec-
tonic history of nonaccretionary forearc regions; (4) investigate the
physical properties of the subduction zone and their influence on dehy-
dration reactions and seismicity; and (5) investigate biological activity
associated with subduction zone material from great depth.

To achieve these scientific objectives, operations during Leg 195 were
designed to recover sufficient materials to permit petrologic and miner-
alogic characterization of the serpentine mud flow units, to analyze
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their pore fluid compositions, to collect any biological material con-
tained in the muds, and to deploy a long-term geochemical observatory
at South Chamorro Seamount.

Establishment of a Seafloor Geochemical Observatory

The primary objective at South Chamorro Seamount was to deploy a
long-term geochemical observatory in a cased reentry hole in the cen-
tral conduit of the serpentine mud volcano. The reentry hole for the in-
stallation of a downhole thermistor string, pressure sensor, and osmotic
fluid samplers was designed to be sealed with a circulation obviation
retrofit kit (CORK). The techniques that were used to install the CORK
were similar to those used for successful installations during Legs 139,
164, 168, and 174B (Davis et al., 1992). The hole at Site 1200 was
CORKed with a thermistor cable to obtain a long-term record of the
temperature variations in the sealed hole as the natural hydrologic sys-
tem reestablishes itself after drilling. This installation will provide a
long-term record of (1) the rebound of temperatures toward formation
conditions after the emplacement of the seal; (2) possible temporal vari-
ations in temperature and pressure due to lateral flow in discrete zones,
regional and/or local seismicity, and short-term pressure effects; and (3)
the composition of deep circulating fluids obtained with the osmotic
samplers. Data from the downhole instruments will be collected during
an NSF-funded Jason/DSL 120 cruise that is tentatively scheduled to be
conducted 18 months after Leg 195.

Fluid Transport

The drill site on South Chamorro Seamount was designed to help as-
sess the variability of fluid transport and composition within the
forearc. Previous field studies indicate that most of the fluid flow in the
Mariana forearc is channeled along forearc faults and fault-controlled
conduits in mud volcanoes. The pore fluid compositions are expected
to vary depending on the nature of the channeling structures (diffuse
network of small faults, major faults, and mud volcano conduits). In
particular, fluids ascending through mud volcano conduits along well-
established paths in contact with previously metamorphosed wall rock
should carry the most pristine slab signature. This was certainly the case
at Conical Seamount, drilled during Leg 125. The summit Site 780 pro-
duced by far the purest deep slab-derived fluids, based on their much
lower chlorinity and higher K, Rb, B, H2S, and sulfate, whereas the flank
Sites 778 and 779 produced combinations of slab-derived fluid and sea-
water that had reacted with peridotite and basalt at shallower crustal
levels (Mottl, 1992).

Fluid Budgets

Although total fluid budgets are difficult to ascertain in any conver-
gent margin, they are likely to be more readily determined at nonaccre-
tionary active margins because the hydrologic flow systems operate on
longer timescales than do those at accretionary margins. Attempts to
determine the total fluid budgets at accretionary active margins have
been hindered by the presence of lateral heterogeneity and transient
flow processes. Lateral heterogeneity results in different flow rates and
compositions along the strike of the margin. Transient flow apparently
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results largely from the valvelike influence of the accretionary com-
plexes themselves.

Sediment properties vary with fluid pressure, and fluid pressure var-
ies as a function of fluid production rate and transient hydrologic prop-
erties. Thus, the accretionary system acts as both a seal and a relief valve
on the fluid flow system. The absence of such a short timescale, fluid
pressure, and formation-properties modulator at nonaccretionary sys-
tems should allow fluids to escape more steadily. To test this hypothe-
sis, the physical nature of fluid flow at nonaccretionary settings must be
determined. Then fluid budgets can be constructed to determine
whether the expected long-term flow is consistent with observations or
if the flow must occur in transient pulses. The CORK experiment
planned for the South Chamorro Seamount site will address this prob-
lem.

Along-Strike Variability

The composition of slab-derived fluids and deep-derived rock materi-
als may differ along the strike of the forearc, reflecting regional varia-
tions in composition within the slab and suprasubduction zone litho-
sphere. The pore fluids from several of the forearc mud volcanoes
already sampled are chemically distinct, and it was anticipated that the
pore waters from South Chamorro Seamount would also be chemically
distinct. These differences are probably associated not only with the
depth to the slab but also with the physical conditions under which
water-rock reactions occur and the variations in the regional composi-
tion of the plate and overriding forearc wedge.

The geochemistry of the fluids from Conical Seamount is described
in detail in several publications (Fryer et al., 1990; Haggerty, 1991; Hag-
gerty and Chaudhuri, 1992; Haggerty and Fisher, 1992; Mottl, 1992;
Mottl and Alt, 1992). These papers show the origin of the Conical
Seamount fluids to be from dehydration of oceanic crustal basalt and
sediment at the top of the subducting lithospheric slab. The composi-
tions of the fluids from the PACMANUS hydrothermal field and sea-
mounts farther south are reported in Fryer et al. (1999). Pore fluids from
these indicate a slab source, as shown by their lower chlorinity and
higher K and Rb, similar to that observed at Conical Seamount by Mottl
(1992).

Pressure and Temperature Indicators from Fluids

The composition of slab-derived and deep-derived metamorphosed
rock is useful in defining geochemical processes and estimates of the
thermal and pressure regime at depth, and thus, for determining the
physical properties of the décollement region. It was hoped that it
would also be possible to constrain some of the pressure and tempera-
ture conditions under which certain dehydration reactions take place in
the subducted slab. Pore fluids from Ocean Drilling Program (ODP) Site
780 at the summit of Conical Seamount are unusual because of
geochemical and physical processes at depth. The observed enrich-
ments in alkali elements and B in fluids from Site 780 are unambiguous
indicators of a source temperature in excess of 150°C, yet the fact that
these elements are depleted at Sites 778 and 779 on the flanks of
Conical Seamount, relative to their concentrations in seawater, indi-
cates that the deep slab signal can be readily overprinted by local peri-
dotite-seawater reactions at lower temperatures. Not all chemical spe-
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cies are affected by this overprinting, however (i.e., sulfur isotopic
composition of dissolved sulfate) (Mottl and Alt, 1992). Thus, to avoid
potential reactions between sediment and slab-derived fluids, we
planned to collect fluids from mud volcano conduits, where continued
focused flow provides a pathway for slab-derived “basement” fluids to
reach the seafloor.

Metamorphic Parageneses

Studies of deep-derived minerals and metamorphic rock fragments
brought to the surface in mud flows in serpentine seamounts can be
used to constrain the pressure and temperature regimes under which
the metamorphism that formed them took place. It is known, for in-
stance, that the minimum pressures of formation for incipient blue-
schist materials from Conical Seamount are 6–7 kbar (Maekawa et al.,
1995). Similarly, from the paragenesis of crossite schist recovered in
cores from South Chamorro Seamount, it can be shown that pressures
>7 kbar are consistent with their metamorphism. Examination of a
more extensive collection of the muds and clasts from South Chamorro
Seamount should make it possible to quantify the assemblages of muds
and xenoliths present in the flows and constrain the ranges of pressure
and temperature that exist in the source regions for these materials.

Biological Activity Associated with Deep-Derived 
Subduction Zone Material

Interest in the deep subsurface biosphere has grown dramatically as a
result of recent studies linking extreme environments to the first living
organisms that inhabited the Earth. The search for the last common an-
cestor in the geologic record is moving toward high-temperature envi-
ronments, such as those at spreading centers and hotspots both on the
ocean floor and on land. Microbes and microbial products are abun-
dant in oceanic hydrothermal environments and are presumed to be
representative of a community of thermophilic and hyperthermophilic
organisms that originated beneath the seafloor (Fisk et al., 1998). Mi-
crobes are also involved in the transformation of minerals in the oce-
anic crust and in the cycling of elements in the crust; however, the ori-
gin of these microbes is much more controversial.

Drilling at Chamorro Seamount provides a unique opportunity to de-
termine the nature of microbiological activity in a very different kind of
extreme environment, the high-pH, low-temperature environment as-
sociated with serpentine/blueschist mud volcanism (Fryer and Mottl,
1997; Fryer et al., 1999), and to reexamine the hypothesis that microbes
are capable of using alternative energy sources that would support a
heterotrophic subsurface ecosystem. In addition, because the pore flu-
ids are more pristine in nonaccretionary convergent margins, it should
be easier to assess from the chemistry of both the muds and the fluids
whether organic syntheses capable of supporting life are active in these
settings.

Understanding the origin of the deep biosphere is a fundamental
ODP objective and will further address the compelling question of
whether life arose in extreme environments rather than on the surface
of the early Earth. Although several experimental studies indicate that a
thermophilic origin of life is possible, definitive proof must await an as-
sessment of the full range of conditions in which life exists and the na-
ture of life in these environments.
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Mechanics and Rheology

The mechanics and rheology of serpentine muds in the Mariana
forearc seamounts control the processes that formed the seamounts and
their morphology. It was thus planned to conduct a rheological study of
the serpentine muds to place realistic constraints on the mechanisms
governing the ascent of the muds to the surface, the maintenance of
the conduits, and the construction of the seamounts.

Shipboard torsion-vane testing during Leg 125 at Conical Seamount
in the Mariana forearc and at Torishima Forearc Seamount in the Bonin
forearc showed that the serpentine muds are plastic solids with a rheol-
ogy that bears many similarities to the idealized Cam clay model and is
well described by critical-state soil mechanics (Phipps and Ballotti,
1992). These muds are thus orders of magnitude weaker than salt and
are, in fact, comparable in strength to common deep-sea pelagic clays.
The rate at which the muds rise relative to the fluids will likely influ-
ence the water-rock reactions and the character of the slab signal in flu-
ids from these mud volcanoes. Better constraints on the nature of the
fluids will permit a more accurate determination of the physical condi-
tions of the décollement, where the fluids originate.

Drilling Strategy and Operations

After steaming to the site and lowering the pipe to the summit of the
seamount, we planned to conduct a brief seafloor television survey of
the conduit to locate the springs and mussel beds identified in Shinkai
6500 dives and to identify sites near the springs for rotary core barrel
(RCB) coring and logging and relatively clast-free sites for advanced pis-
ton corer/extended core barrel (APC/XCB) coring, jet-in tests, and the
establishment of a reentry hole. After conducting a jet-in test to estab-
lish the depth of the first casing string for the reentry hole, we planned
to core and log an RCB pilot hole to 450 meters below seafloor (mbsf) to
determine the nature of the formation and the ease of drilling on the
seamount, a major concern because drilling during Leg 125 at Conical
Seamount had been plagued with drilling problems.

Depending on the results of the RCB hole, we then planned to offset
and jet in a reentry cone and 20-in casing to ~25 mbsf and then drill a
hole in stages to 420 mbsf for the CORK installation. In anticipation of
hole instability problems, an elaborate casing program was envisioned,
with cemented 16-in casing to 200 mbsf followed by 10.75-in casing to
400 mbsf, including 23 m of screened casing and a casing shoe at the
bottom to prevent the serpentine mud from slowly invading the instal-
lation from below. After the hole was drilled and cased, the instrumen-
tation installed, and the remotely operated vehicle (ROV) platform em-
placed, we planned to drill an APC/XCB hole to 420 mbsf to collect a
continuous, undisturbed section for petrologic and pore water studies.
By drilling the APC/XCB hole last, the time allocated for APC/XCB cor-
ing could be held in reserve as contingency time if it took longer than
anticipated to drill the reentry hole and install the observatory. Not sur-
prisingly, the actual operations at Site 1200 unfolded rather differently.

The JOIDES Resolution arrived at Site 1200 (proposed Site MAF-4B) at
2100 hr on 11 March 2001. Following a 4-hr camera survey, Hole 1200A
was spudded adjacent to a vent mussel community at the top of South
Chamorro Seamount at 2200 hr on 11 March with the RCB and cored
to a depth of 147.2 mbsf (Fig. F6; Table T1). High torque and lost rota-
tion at this depth resulted in a stuck drill string that ultimately forced
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us to abandon the hole. Recovery in Hole 1200A was poor (147.2 m
cored; 9.4% recovered), with little recovery of the mud matrix material
surrounding the hard ultramafic clasts. The drill string was pulled out
of the hole, and the seafloor was cleared at 1535 hr, ending Hole 1200A.

The ship was then offset 25 m to the east, and Hole 1200B was spud-
ded at 1640 hr on 13 March. Our intention was to wash to 147.2 mbsf
and then start coring to the target depth of 450 m. By 1615 hr on 14
March, the hole had been advanced to a depth of 98.0 mbsf. Once
again, high torque and overpull began to plague the hole. Despite con-
sistent mud sweeps and multiple reaming attempts, the hole could not
be stabilized. At 0645 hr on 14 March, we decided to abandon further
drilling/coring efforts in the pilot hole and to start the reentry hole be-
cause it was obvious that deep penetration could not be achieved with-
out the use of casing.

Once the drill string was pulled out of the hole with the top drive,
the ship was offset to the north and Hole 1200C was spudded at 0450
hr with the 20-in casing attached to the reentry cone. After a total of
18.25 hr of drilling with an 18.5-in bit, 22-in underreamer, and drilling
motor, the reentry cone base reached the seabed, placing the 20-in cas-
ing shoe at 23.7 mbsf. Drilling of the 22-in hole for the 16-in intermedi-
ate casing string, without the motor this time, advanced smoothly and
without incident. At 0130 hr on 18 March, the hole reached a depth of
140 mbsf. While we washed/lowered the casing string into the hole,
however, the casing shoe encountered an obstruction 6 m off bottom
that prevented the casing hanger from landing. After three futile hours,
the drill string was recovered and one joint of casing was removed from
the string. The shortened string was run back into the hole and washed
down without incident. With the 16-in casing shoe placed at a depth of
107.4 mbsf, the casing string was cemented in place. The drilling pro-
cess was then reinitiated using a 14.75-in drill bit and 20-in under-
reamer, dressed with 20-in cutter arms, and advanced to a depth of
266.0 mbsf. The penetration rate deteriorated to zero at that point, and
a subsequent wiper trip found 9 m of soft fill at the bottom of the hole
that was easily removed by circulation. Upon reaching the rig floor, the
underreamer was missing two out of three cutters. Because the hole had
penetrated below the base of the summit knoll but could not be deep-
ened further, the 10.75-in casing was deployed, reaching a depth of
224.0 mbsf by 0300 hr on 24 March without incident. However,
progress beyond this point was not possible, and the string was pulled
out of the hole to remove three joints of casing. The shortened casing
string finally placed the shoe at 202.8 mbsf, with the screened interval
extending from 202.3 to 148.8 mbsf (Fig. F7).

The CORK assembly, with two stands of 5.5-in drill pipe used as the
stinger, was run in the hole, and the drill string was lowered to 53.0
mbsf. This left the CORK shy of landing out by ~8 m. At 1300 hr on 25
March, the thermistor/osmotic sampler assembly was slowly run in the
hole, and at 1430 hr the data logger was landed in the CORK body. Af-
ter 1 hr of pressure transducer calibration, the data logger was latched
and the CORK body was then lowered the final few meters and latched
in place as in Figure F8. The CORK installations at Hole 1200C ended
with a successful free-fall deployment of the ROV platform. The pipe
was then returned to the surface; not counting the pilot holes, nine
round pipe trips totaling 52 pipe-km of tripping pipe were required to
deploy the observatory.

After the successful installation of the geochemical observatory, the
vessel was offset 40 m to the south and Hole 1200D was spudded with
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the APC to sample the serpentine muds for petrology, pore water, and
microbiology studies at 1415 hr on 26 March. Coring continued to a
depth of 44.4 mbsf using the APC advance-by-recovery method. Hard
clasts were drilled with an XCB center bit assembly. After coring was
halted by a hard clast at 44.4 mbsf, the XCB was used to deepen the
hole. After advancing 9.0 m, however, the penetration rate fell to zero
and the decision was made to abandon Hole 1200D.

The vessel was then offset back to the location of the earlier identi-
fied mussel beds, and Hole 1200E was spudded with the APC for further
pore water studies. Coring with the APC/XCB continued, again using
the advance-by-recovery method for the APC cores, to a depth of 50.4
mbsf, where the scientific objectives of the hole were met.

The ship was then offset 20 m to the north, and Hole 1200F was
spudded at 1315 hr. Coring proceeded until the time allocated for oper-
ations at Site 1200 ran out. The hole depth reached 16.3 mbsf, with the
recovery of APC Cores 195-1200F-1H through 3H. At 0200 hr on 29
March 2001, the ship was under way to the Guam pilot station.

Principal Results

The principal objective at Site 1200 was to install a borehole
geochemical observatory at the summit of South Chamorro Seamount
to sample fluids from the décollement below the Mariana forearc. Al-
though this objective was achieved, no data will be recovered from the
observatory until it is revisited by an ROV in 2003. As was to be ex-
pected in such an exotic environment, however, the drilling and coring
undertaken to install the observatory and document its setting pro-
duced unexpected and often spectacular results.

Perhaps the most fundamental achievement at Site 1200 was the
documentation of the muds, xenoliths, and fluids rising to the surface
from the mantle and the décollement zone through the central conduit
of the mud volcano. The recovery in all cored holes consisted of poorly
sorted, dark blue-gray to black serpentine mud breccia (Fig. F9) in
which the muds are composed predominantly of silty clay–sized ser-
pentine, and the clasts, which range up to a meter across, consist
largely of serpentinized ultramafics.

Well-preserved and diversified subtropical assemblages of planktonic
foraminifers and calcareous nannofossils were found in the top 0.1–0.3
m of the holes that were APC cored (Holes 1200D, 1200E, and 1200F),
indicating that the surface of the summit is blanketed with a veneer of
calcareous microfossil-bearing deposits. A few species of benthic fora-
minifers are also present in small quantities in all holes. Samples far-
thest away from the vent communities contain more abundant, diversi-
fied, and better-preserved microfossil fauna. The downcore sections in
these three holes are virtually barren of microfossils, except for a pecu-
liar interval with folded color bands between 11 and 13 mbsf in Hole
1200D, which is interpreted as a paleosurface that has been covered or
folded into the mud by the flow of serpentine. This interval contains
abundant and diversified calcareous microfossils comparable to the
core tops. The major difference is that these fossils tend to be robust
species overgrown by calcite on the original structures, whereas the
more delicate species have been dissolved. All the fossils are late Quater-
nary in age.

With the exception of the two calcareous intervals noted above,
which are light yellow-brown to pink due to their microfossil content,
and a 10- to 20-m-thick zone of strongly reduced, black serpentine
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muds starting about a meter below the seafloor, the mud breccia in the
conduit displays no stratigraphy, which is consistent with its mud vol-
cano origin. It has been divided into two facies, however, on the basis
of the abundance of clasts (<10% and 10%–30%); based on recovery,
the average is ~7%. The smaller ultramafic clasts tend to be angular
with planar external surfaces along early serpentine veins, whereas the
larger clasts are subrounded to rounded, suggesting comminution by
collisions during ascent.

The mineralogy and composition of the muds and clasts almost all
attest to a deep origin along the décollement zone or the overlying
mantle, regardless of the particle or clast size, from silty clay to boulder.
With the exception of aragonite produced at the mudline, where rising
pore fluids interact with seawater to produce carbonates and rare zeo-
lites (analcime) found farther down in the section, X-ray diffraction
(XRD) analysis shows that the muds are dominated by serpentine min-
erals formed by the hydration of ultramafics + accessory glaucophane,
spinel, garnet, chlorite, and talc derived from the metamorphism of
mafic rocks along the décollement. Optical examination on board ship
suggests lizardite/antigorite > chrysotile > brucite.

The dual origin of the materials making up the mud breccia is even
more clearly revealed in the grit fraction (0.1–1.5 cm). About 90% by
volume of the grit fraction consists of partially to completely serpenti-
nized ultramafic rocks, but 10% consists of metabasites, including glau-
cophane schist (Fig. F10), crossite/white-mica/chlorite schist, chlorite
schist (Fig. F11), white-mica schist, and amphibolite schist containing
blue-green to black amphibole and interstitial mica. These lithologies,
especially the blueschists, are indicative of a high-pressure, low-temper-
ature origin (Fryer et al., 1999; Fryer and Todd, 1999; Todd and Fryer,
1999), and we interpret them as metamorphosed basic rocks from the
descending slab. About 1% of the serpentine mud consists of blue sodic
amphibole. Analysis of similar grains in gravity cores from South
Chamorro Seamount showed a crossitic composition (Fryer et al.,
1999). The mineral grains are zoned with blue rims and lighter blue-
green cores, implying relatively rapid ascent with the rising serpentine
muds. The rationale for this interpretation is that if the grains had been
in contact with rising fluids having the extreme compositions observed
in the pore water analyses (see below) for geologically significant peri-
ods of time, they would have likely back-reacted and would show retro-
grade metamorphic effects.

Although retrograde reactions are generally sluggish, the primary rea-
son for this is the lack of reactive fluids in a system that has previously
experienced prograde regional metamorphism. Such metamorphism
drives volatiles out of the rocks, resulting in a dry system, which is far
less likely to undergo retrograde metamorphism despite changes in
pressure and temperature. The presence of highly reactive fluids in inti-
mate contact with the serpentine muds at Site 1200, however, would
make the possibility of retrograde reactions far more likely. None of the
materials studied previously by Fryer and colleagues (Fryer et al., 1999;
Todd and Fryer, 1999) have ever shown any indication of retrograde ef-
fects. The mineral grains from Site 1200 also lack retrograde effects.

Although the grit fraction contains a rich and varied population of
high P-T samples from the décollement, such samples appear to be ab-
sent from the large clasts, suggesting that the metabasites reaching the
surface are preferentially smaller pieces. The abundance of phyllosili-
cate minerals in the schists may contribute to the comminution of
these samples as they rise from the source region. Pressure release as the
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rock fragments rise may cause the phyllosilicates to expand and disinte-
grate, and the continual collisions and mechanical grinding within the
rising muds may cause the more friable rocks to break up into small
fragments.

As noted earlier, about 7% of the material recovered at Site 1200 con-
sists of large clasts of partially to completely serpentinized ultramafic
rocks from the mantle wedge under the Mariana forearc. Whereas ser-
pentinization has been extensive in all samples (40%–100%; average =
~75%), there are sufficient relict minerals present in many of the sam-
ples to assess the original grain size (0.01–5.0 mm) and to determine
that harzburgite is the dominant protolith, dunite is much less com-
mon, and lherzolite is rare. This is consistent with the whole-rock
chemistry of the samples, which suggests that the ultramafics under-
went 20%–25% melt extraction at some point during the formation of
the arc (Fig. F12). The actual percentage of relict minerals is extremely
variable, with olivine ranging from 0% to 40%, orthopyroxene (ensta-
tite) from 0% to 35%, clinopyroxene from 0% to 5%, and chrome
spinel from 0% to 3%, depending on the original mineralogy and the
degree of serpentinization. In general, olivine and enstatite were the
least stable minerals, with olivine altering readily to serpentine (lizard-
ite) or brucite + magnetite and enstatite altering to serpentine ± tremo-
lite/actinolite, whereas clinopyroxene and spinel were usually the most
resistant to alteration. Olivine often developed mesh and hourglass tex-
tures during serpentinization, whereas enstatite is commonly replaced
by bastitic textures. The serpentinization appears to have occurred in
stages, because lizardite veins are often cut orthogonally by chrysotile
veins, producing spectacular “Frankenstein veins” consistent with uni-
form dilation during late-stage serpentinization along grain boundaries.
Interestingly, most of the ultramafics and all of the dunites show evi-
dence of deformation prior to serpentinization: the olivines commonly
show kink banding and granulation and the enstatites (or their bastite
replacements) often display undulatory extinction.

The pore waters from Site 1200 revealed two distinct phenomena, a
deep-sourced fluid that is believed to be upwelling from the top of the
subducting slab 25–30 km below the seafloor and a new and exotic ex-
tremophile microbial community at 0–20 mbsf that is chemically ma-
nipulating its environment. As can be seen in Figure F13, most pore wa-
ter vs. composition profiles for the site represent nearly ideal advection-
diffusion curves and the gradients in the top few meters are so steep
that they can only be maintained by upwelling from below. The deep
fluid is similar in many ways to that sampled at Conical Seamount to
the north during Leg 125 (Fryer, Pearce, Stokking, et al., 1990). It has a
pH of 12.5 because it is in equilibrium with brucite, making it, along
with the Conical Seamount fluids, the most alkaline pore water ever
sampled in the deep sea. The pore water is also enriched in (mainly car-
bonate) alkalinity (60 mmol/kg), Na (610 mmol/kg), Na/Cl (1.2), K (19
mmol/kg), B (3.2 mmol/kg), ammonia (0.22 mmol/kg), methane (2
mmol/kg), and C2 through C6 hydrocarbons, all components that are
virtually absent in depleted harzburgites and therefore require a differ-
ent source. The pore water is highly depleted in Mg, Ca, Sr, and Li and
has low concentrations of Si, Mn, Fe, Ba, and phosphate. It is slightly
depleted in chloride (510 mmol/kg in seawater) and enriched in sulfate
(by 7% relative to chloride). This chloride depletion is much smaller
than in the deep fluid from Conical Seamount, suggesting that the
Conical conduit is more heavily serpentinized and less reactive, allow-
ing more of the H2O from the deep source to arrive at the seafloor with-
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out being lost to serpentinization along the way, or that the fluids are
rising more rapidly at Conical Seamount and have had less time to re-
act.

Pore water composition vs. depth profiles also reveal that these deep
fluids feed an active microbial community that is oxidizing light hydro-
carbons from the fluid while reducing sulfate within the black serpen-
tine mud in the upper 20 mbsf. This is a true extremophile community,
operating at and probably driving the pH to 12.5, thus perpetuating its
own ecosystem. Sulfate reduction is most active at two levels. Microbes
within the upper level at 3 mbsf reduce seawater sulfate that diffuses
downward against the ascending flow. Those within the lower level at
13 mbsf reduce sulfate that is supplied from the subducting slab by the
upwelling fluid. As organic carbon is virtually absent within the de-
pleted, serpentinized harzburgite, the microbes rely on methane and
the C2 through C6 thermogenic hydrocarbons for their source of or-
ganic carbon and ammonia for their source of nitrogen. Both are sup-
plied by the upwelling fluid. The microbial community intercepts these
nutrients and effectively traps them within the ecosystem, where they
can be recycled and continually enriched. This process explains the en-
richment in organic carbon in the uppermost sediment. Iron sulfides
and CaCO3 in the form of aragonite needles and chimneys are also en-
riched there by reaction between the ascending fluid, the microbial
community, and the overlying seawater.

As would be expected, the physical properties of the serpentine muds
and clasts at Site 1200 are quite different and both are strongly influ-
enced by the properties of serpentine. The velocities of the clasts, for
example, range from 3.8 to 5.5 km/s and average 4.9 km/s, consistent
with extensive serpentinization. Whereas the mud and the clasts have
the same average grain density (2.64 g/cm3), the average bulk densities
of the clasts and the muds are lower and quite different, 2.49 and 1.87
g/cm3, respectively. This is due primarily to differences in porosity be-
tween the clasts, which have low porosities, and the muds, which range
from 40% to 60% porosity. Assuming the mud constitutes 93% of the
breccia, the material in the conduit has an average density of 1.91 g/
cm3. If the average density of the crust is 2.75 g/cm3, then the buoyancy
of the serpentine mud breccia in the upper crust would be ~0.8 g/cm3

before consolidation, or four times the density contrast between the
salt in diapirs and most sedimentary rocks. Similarly, the buoyancy of
completely consolidated serpentine mud breccia with a bulk density of
2.64 g/cm3 (the grain density) in fresh ultramafics (~3.2 g/cm3) would
be ~0.5 g/cm3, or more than twice the buoyancy of salt in sedimentary
rocks. Whereas the average shear strength of the serpentine mud (52.5
kPa) is high for sediments, it is orders of magnitude lower than that for
rocks, which is consistent with their extrusion on the seafloor as mud
volcanoes.

Interestingly, although vent communities are observed on the sum-
mit, the borehole temperatures are very low in the upper 50 m in all of
the holes measured at Site 1200, ranging from 2° to 3°C, or ~1.3°C
above seafloor values. The heat flow values are quite variable, however,
with those measured in Holes 1200A and 1200E near the springs aver-
aging 15 mW/m2, considerably below the global average of 50 mW/m2,
whereas the value measured in Hole 1200F, which was farther away, was
~100 mW/m2. The thermal conductivities of the muds are not unusual,
ranging from 1.04 to 1.54 W/(m·K) with an average of ~1.32 W/(m·K),
but the hydraulic conductivities are extremely low, ~0.6 cm/yr.
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Unlike the physical properties discussed above, the magnetic proper-
ties of the clasts and muds are similar: the average natural remanent
magnetization (NRM) intensities of both are high (0.49 and 0.44 A/m
for the clasts and muds, respectively), as are their average susceptibili-
ties (5.58 × 10–3 and 6.81 × 10–3, respectively). In both cases, the magne-
tization disappears at a Curie temperature of 585°C, indicating that the
dominant magnetic mineral is magnetite produced by serpentinization.
The only significant difference is that the NRM in the serpentine muds
is unstable, whereas that in the clasts tends to be stable, with a high
Koenigsberger ratio (average = 2.4). The NRM inclination and declina-
tion vary randomly with depth in single long pieces, however, indicat-
ing that the magnetization was acquired (i.e., serpentinization oc-
curred) over a relatively long period or when the rock was being
deformed or tumbled in the décollement or the conduit of the sea-
mount.

SITE 1201: ION SEISMIC OBSERVATORY

West Philippine Basin

Tomographic studies using earthquake waves propagating through
the Earth’s interior have revolutionized our understanding of mantle
structure and dynamics. High-quality digital seismic data obtained
from seismic stations on land, for example, have been used to identify
zones of anomalous velocity and anisotropy in the mantle, and from
these, to determine patterns of mantle flow. In particular, Tanimoto
(1988) has demonstrated the existence of a strong pattern of deep (>550
km) high-velocity anomalies in the western Pacific, suggesting complex
interaction between subducting slabs and the surrounding mantle,
whereas more recent studies in areas of dense seismic coverage have
provided crude images of subducting plates extending to the 670-km
discontinuity (van der Hilst et al., 1991; Fukao et al., 1992) and of deep
velocity anomalies extending beneath ridges (Zhang and Tanimoto,
1992; Su et al., 1992).

One of the critical problems facing seismologists who wish to im-
prove such tomographic models is the uneven global distribution of
seismic stations. Few seismic stations are located on the 71% of the
Earth’s surface covered by oceans, and this problem is particularly acute
in large expanses of ocean such as the Pacific. The scientific importance
of establishing long-term geophysical observatories at deep ocean sites
to understand the dynamic processes occurring in the Earth’s interior
through seismic imaging has long been recognized by the earth science
and ocean drilling communities (COSOD II, 1987; JOI-ESF, 1987; Purdy
and Dziewonski, 1988; JOI/USSAC, 1994; Montagner and Lancelot,
1995). The International Ocean Network (ION) project has identified
the western Pacific and the Philippine Sea as a particularly important
gap in the global seismic network. By installing long-term borehole seis-
mic observatories in the seafloor in this region, the ION project is at-
tempting to fill this gap so that high-resolution tomographic images of
slab–mantle interaction zones can be obtained at great depth in the
most active system of subduction complexes in the world. To this end,
borehole seismic observatories were installed at ODP Sites 1150 and
1151 (Stations JT-1 and JT-2 in Fig. F14) on the inner wall of the Japan
Trench during Leg 186 (Suyehiro, Sacks, Acton, et al., 2000) and an-
other observatory was successfully installed at Site 1179 in the western
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Pacific (Station WP-2 in Fig. F14) during ODP Leg 191 (Kanazawa, Sager,
Escutia, et al., 2001).

A major objective of the ION project was to establish a borehole seis-
mic observatory at a quiet site in the middle of the Philippine Sea on
the upper plate of the Mariana subduction system to determine
whether the Pacific plate is penetrating into the lower mantle below the
670-km discontinuity under the Mariana Trench but not under the Izu-
Ogasawara (Bonin) Trench. A high-quality digital seismic observatory
was thus installed during Leg 195 at Site 1201 in the West Philippine
Basin west of the Kyushu-Palau Ridge between existing stations at
Inuyama (IMA) and Taejon (TJN) to the north, Minami Torishima
(MCSJ) and Chichijima (OGS) to the east, Ponphei (PATS) and Jayapura
(JAY) to the south, and Ishigakishima (ISG) and Baguio (BAG) to the
west (Fig. F14). The observatory is designed as a stand-alone system
with its own battery pack and recorder at the seafloor so that it can be
serviced and interrogated by an ROV. Like the borehole observatories
installed at Sites 1150 and 1151, however, there is a coaxial trans-
oceanic telephone cable (TPC-2) near Site 1201 that can be used eventu-
ally for data recovery and power. There are plans to connect data, con-
trol, and power lines to the TPC-2 cable, which is owned by the
University of Tokyo, after confirmation of data retrieval. This is done
under the auspices of the Ocean Hemisphere Network Project, a na-
tional program from 1995 to 2001 in Japan. The data will eventually be-
come accessible worldwide through the Internet.

Geologic Setting

Site 1201 is located in the West Philippine Basin in 5711 m of water
~100 km west of the inactive Kyushu-Palau Ridge and 450 km north of
the extinct Central Basin Fault (Fig. F15). Early interpretations of mag-
netic lineations (Hilde and Lee, 1984) indicated that the site lies on 49-
Ma crust near Chron 21 and formed by northeast-southwest spreading
on the Central Basin Fault. The spreading direction then changed to
north-south at ~45 Ma, and spreading finally ceased at ~35 Ma as volca-
nism stopped on the Kyushu-Palau Ridge. Because the earliest magnetic
anomalies in the region predate the initiation of subduction at ~45 Ma
along the Kyushu-Palau Ridge, Hilde and Lee (1984) considered that the
Philippine Sea initially formed by entrapment of an older Pacific
spreading ridge. More recent bathymetric and magnetic surveys (Okino
et al., 1999) show that the site lies at the transition from well-defined
anomalies south of the Oki-Daito Ridge to more complicated anomalies
to the north, which implies that the crust to the north may have
formed at a different spreading center. Analysis of paleolatitude and
declination data from the Philippine plate and its margins suggests that
the plate has drifted about 15° to the north and rotated clockwise by up
to 90° since the middle Eocene (Hall et al., 1995).

The sediment section at Site 1201 was predicted to be ~400 m thick
based on recent seismic reflection surveys showing a two-way travel-
time to basement of 0.45 s (Fig. F16). Drilling at other sites in the re-
gion during Deep Sea Drilling Project (DSDP) Legs 31 and 59 (Karig, In-
gle, et al., 1975; Kroenke, Scott, et al., 1981) recovered a relatively
barren deepwater section dominated by Holocene to Eocene–
Paleocene(?) brown pelagic clays overlying basement near the Oki-
Daito Ridge (DSDP Sites 294 and 295). At DSDP Sites 290 and 447 to the
south, the section consists of a barren interval of Pliocene clays under-
lain by Oligocene nannofossil-bearing silty clays mixed with ash. This
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was underlain by a thick section of polymict and volcanic breccia pre-
sumably derived from the Kyushu-Palau Ridge to the east. The under-
lying basement consists of 80% basalt pillows and 20% diabase. Because
Site 1201 lies in a similar setting at the foot of the Kyushu-Palau Ridge,
it was considered likely that the section would be similar to that at Sites
290 and 447.

Scientific Objectives

The principal objective at Site 1201 was to install a long-term bore-
hole seismic observatory in the middle of the Philippine plate to im-
prove global seismic coverage, to study the structure of the upper man-
tle under the Philippine Sea, and to study plate interactions in the
western Pacific. It was also expected that drilling at Site 1201 would
provide samples representative of the Eocene/Paleocene crust of the
northern West Philippine Basin. Results from this site would thus aug-
ment those obtained during DSDP Legs 31 and 59, which were the first
legs to sample and estimate the age of basement in the region and to
confirm that the seafloor formed by backarc spreading. Results from
this site will also add to our knowledge of backarc crustal structure and
geochemistry, microplate tectonics, magnetic lineations, and sedimen-
tation. Because core quality and dating techniques have vastly im-
proved since these early legs, it was also anticipated that drilling at Site
1201 would provide better age control on backarc spreading as well as
detailed records of Northern Hemisphere climate change, eolian trans-
port, and arc volcanism in the region during the Tertiary.

Establishment of a Borehole Seismic Observatory

As outlined above, one of the main reasons for installing a borehole
seismic observatory in the middle of the Philippine plate was to achieve
homogeneous seismic coverage of the Earth’s surface with at least one
station per 2000 km in the northwestern Pacific area (Fig. F14). Aside
from plugging an important gap in the global seismic array, the Site
1201 observatory will produce high-quality seismic data. Tests with
other borehole seismometers show that the noise level for oceanic bore-
hole instruments is much lower than for most land stations (e.g.,
Stephen et al., 1999). High-quality seismic data from this site will be
used for several purposes.

Earthquake Mechanisms

First, an observatory at Site 1201 will provide data from the backarc
side of the Izu-Ogasawara and Mariana Trenches, giving greater accu-
racy and resolution of earthquake locations and source mechanisms.
The observatory will also be valuable for resolving events in the Ryukyu
and Philippine Trenches because its location is analogous to that of sta-
tion WP-2 off the Japan Trench.

Structure of the Philippine Plate

Observations of seismic surface waves as well as various phases of
body waves from earthquakes along the margins of the Philippine plate
will provide sufficient data to map differences in plate structure among
the different basins comprising the plate (e.g., the West Philippine,
Shikoku, Japan, and Parece Vela Basins). Only a few previous studies
with limited resolution exist on the lithospheric structure of these areas
(Seekins and Teng, 1977; Goodman and Bibee, 1991). Surface wave data
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suggest that the plate is only ~30 km thick (Seekins and Teng, 1977).
Such a value is inconsistent with predicted values from age vs. heat flow
and age vs. depth curves (Louden, 1980). A long-line (500 km) seismic
refraction experiment in the West Philippine Basin could not image the
lithosphere/asthenosphere boundary (Goodman and Bibee, 1991).

Mantle Structure and Dynamics

Finally, Site 1201 will provide higher seismic resolution of mantle
and lithosphere structures in key areas that are now poorly imaged.
There are indications that the subducting Pacific plate does not pene-
trate below the 670-km discontinuity and that it extends horizontally
(Fukao et al., 1992; Fukao, 1992), but the resolution of these studies is
poor (>1000 km) beneath the Philippine Sea and the northwestern
Pacific, especially in the upper mantle, where significant discontinuities
and lateral heterogeneities exist (Fukao, 1992). Data from Site 1201 will
be crucial in determining whether the Pacific plate is penetrating into
the lower mantle in the Mariana Trench but not in the Izu-Ogasawara
(Bonin) Trench (van der Hilst et al., 1991; Fukao et al., 1992; van der
Hilst and Seno, 1993) and in determining how the stagnant slab even-
tually sinks into the lower mantle (Ringwood and Irifune, 1988). De-
tailed images of mantle flow patterns may also help explain how back-
arc basins open and close and explain the mantle heterogeneity that
causes the basalts sampled from western Pacific marginal basins to have
Indian Ocean Ridge isotopic characteristics (Hickey-Vargas et al., 1995).

In addition to the seismic objectives at Site 1201, we recognized that
coring at the site might accomplish a number of important geologic ob-
jectives.

Age of Basement

Although the age of the basement in the northern West Philippine
Sea has been estimated from magnetic anomalies, paleontologic confir-
mation has been imprecise because of spot coring, core disturbance,
and poor preservation of microfossils. By continuous coring to base-
ment using modern coring techniques, we hoped to obtain an accurate
basement age from undisturbed microfossils, magnetostratigraphy, or
radiometric dating of ash horizons. This information would be of con-
siderable importance in constraining models of backarc spreading.

Basalt Chemistry and Crustal Thickness

Recent studies on the relationship between mid-ocean-ridge basalt
(MORB) chemistry and crustal thickness indicate that the degree of par-
tial melting is strongly controlled by the temperature of the upwelling
mantle at the ridge. The volume of the melt (represented by the crustal
thickness) and its chemical composition are sensitive to the tempera-
ture. This means that a knowledge of crustal thickness in an ocean ba-
sin makes it possible to estimate the temperature at which the crust was
formed and the concentration of major and minor chemical elements
in the resulting basalts (e.g., Klein and Langmuir, 1987; White and
Hochella, 1992). To date, these studies have concentrated on young
MORBs. The chemical model on which these predictions are based still
has large uncertainties, partly because there are few cases off ridge
where rock samples and high-quality seismic data have been collected
at the same location. Chemical analysis of the basalt samples from Site
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1201 should provide clues as to why the crust in the Philippine Basin is
3 to 4 km thinner than normal.

Tertiary Climate Record

Previous drilling in the West Philippine Sea was conducted during
DSDP Legs 31 and 59 before the advent of piston coring, and many of
the holes were only spot cored. As a consequence, the available core
from the region is almost useless for stratigraphic and paleontologic re-
constructions. By obtaining a continuous, high-quality record of pe-
lagic sedimentation supplemented by high-quality logs, we hoped to
obtain a proxy record of Tertiary climate change for the region. It was
anticipated that the upper levels of the section might also contain a
record of eolian transport from Eurasia.

Ash Fall Record

Although ash and tuff were present in the sediments recovered in the
region during previous legs, it was impossible to reconstruct the ash fall
stratigraphy because of core disturbance and the discontinuous nature
of the coring. By continuous coring using APC and XCB techniques and
correlation with high-resolution Formation MicroScanner (FMS), natu-
ral gamma spectrometry tool (NGT), and ultrasonic borehole imager
(UBI) logs, we hoped to obtain a detailed record of arc volcanism
around the Philippine Sea.

Philippine Plate Paleolatitude, Rotation, and Tectonic Drift

Paleomagnetic measurements of sediments and basalt cores are im-
portant because oriented samples are difficult to obtain from the
oceans. The basalts record the direction of the magnetic field at the
time the basalts were emplaced and can be used to infer the paleolati-
tude of the site (e.g., Cox and Gordon, 1984). Although it was unlikely
that enough flow units would be cored at Site 1201 to average secular
variation adequately, it was thought that the results would be useful in
determining a Paleogene paleomagnetic pole for the Philippine plate.
Sediments are typically a good recorder of the Earth’s magnetic field
and should contain a continuous record of the movement of the Philip-
pine plate through the Cenozoic. By collecting oriented sediment cores,
we hoped to study the rotation of the Philippine plate and the initia-
tion of subduction of the Pacific plate.

Drilling Strategy and Operations

After arriving on site, we planned to drill and core two pilot holes to
determine the geology of the formation and to establish the casing re-
quirements for the reentry hole that was to house the borehole seismic
observatory. The first was to be APC cored to refusal (estimated at 200
mbsf) with the Tensor core orientation tool then XCB cored to base-
ment, estimated at ~370 mbsf. After a jet-in test, a second pilot hole was
to be drilled to basement and then cored 100 m into basement using
the RCB to determine the nature of the basement. This hole would then
be logged to identify a suitable interval for setting the seismometer
package.

Once the pilot holes had been completed, we planned to offset and
jet in a reentry cone and ~60 m of 16-in casing. The hole would then be
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reentered and deepened to ~425 mbsf with a 14.75-in tricone bit to
lower a 410-m string of 10.75-in casing ~40 m into basement and ce-
ment it in place. The hole would then be reentered again and deepened
to ~100 m in basement for the seismometers. After the seismometer
package had been made up, lowered into the hole, and cemented in
place, a battery package would be lowered into the throat of the reentry
cone and acoustically released. The pipe would then be tripped to the
surface, bringing the deployment to completion so that it could be acti-
vated by an ROV at a later time. As at Site 1200, however, the actual op-
erations at Site 1201 departed significantly from those that had been
planned.

The JOIDES Resolution arrived on site at 1600 hr on 31 March 2001,
following a 2-day transit from Guam. After the pipe was lowered to the
seafloor, Hole 1201A was spudded with the APC/XCB to study the sedi-
ment section but the hole was abandoned after one core because of a
premature APC shear pin failure. APC coring was then initiated in Hole
1201B at 1905 hr on 1 April and continued to a depth of 46.7 mbsf, af-
ter which the hole was deepened with the XCB to 90.3 mbsf (Table T1).
The vessel was then offset 15 m to the west and a third APC hole,
1201C, was spudded and cored to refusal at 48.1 mbsf to provide a re-
peat section through the soft sediments. The Tensor core orientation
tool was used on the third, fourth, and fifth cores in both Holes 1201B
and 1201C, and a temperature measurement was taken with the Adara
shoe at a depth of 44.6 mbsf in Hole 1201C.

A problem with the spooling of the coaxial cable used for the under-
sea television camera became apparent during the deepwater operations
at the site. Since the undersea camera was required for reentry and the
deployment of the seismic observatory, we decided to search for a deep-
water pocket where we could fully extend and retension the cable in an
attempt to correct the problem. After steaming 204 nmi northwest to a
small basin indicated on Japanese hydrographic charts, we deployed
the coaxial cable to a depth of 6183 m and fixed the spooling problems.

At 0718 hr on 5 April, the vessel was back at Site 1201 and the main
pilot hole, Hole 1201D, was spudded 120 m south of Hole 1201C. The
hole was drilled with a center bit to a depth of 80.4 mbsf, where RCB
coring was initiated. Coring proceeded without incident to basement at
510 mbsf, which was considerably deeper than initially predicted, and
then continued another 90 m into the basement to a total depth of 600
mbsf. After releasing the bit, Hole 1201D was logged with the triple
combination (triple combo) tool from 80 mbsf to total depth. A second
logging run with the FMS-sonic tool could not pass an obstruction at
366 mbsf because of deteriorating hole conditions. After completing
the run in what was left of the open hole, the pipe was lowered again in
an attempt to reopen the hole for logging but an impassable bridge was
reached at a depth of 90 mbsf. At that point, a 50-m plug of cement was
set to prevent future fluid communication with the cased reentry hole
and seismometer.

The hole for the seismometer was initiated at 1600 hr on April 14,
when Hole 1201E was spudded with a reentry cone and 16-in casing
and jetted in to a depth of 39.1 m. The hole was then drilled to 543.0
mbsf and cased with 10.75-in casing to a depth of 527.0 mbsf, or 15 m
into basement. After cementing the casing in basement, the 9.875-in
ION installation hole was drilled to a total depth of 580 mbsf. By 1230
hr on 23 April, the seismometer instrument string was assembled and
final electrical integrity checks were completed (Fig. F17). Hole 1201E
was then reentered and the instrument package was lowered into the

OBH (T1023[D003])

OBH (T1038[D417])

BIA

F17. Borehole seismometer instru-
ment package, p. 49.
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hole without incident. The seismometer package was cemented in place
with the end of the stinger located at a depth of 568.7 mbsf (Fig. F18).
The top of the uppermost seismometer was placed ~558.4 mbsf, or
~46.4 m below the basement contact. At 0830 hr on 24 April, the bat-
tery platform was lowered through the moonpool and landed in the re-
entry cone at 1400 hr (Fig. F19). A handheld acoustic command unit
was used to release the platform. Proper platform installation was con-
firmed with the subsea television camera, and by 1100 hr on 25 April,
the ship was secured for transit and under way to Site 1202 (alternate
Site KS-1).

Principal Results

The principal objective at Site 1201 was to install a long-term bore-
hole seismic observatory in the middle of the Philippine plate. Al-
though this was successfully accomplished, the observatory will not be
activated until its brains are installed during an ROV visit in the spring
of 2002 and no data will be recovered until it is revisited in 2002 or
2003. In the meantime, the core recovered during the course of prepar-
ing the hole for the observatory produced striking and, in some cases,
unexpected results.

Drilling at Site 1201 yielded a composite 600-m-thick section consist-
ing of 510 m of Miocene through late Eocene sediments and 90 m of
basalt. The sedimentary section consists of two lithostratigraphic units
(Fig. F20). The uppermost unit (0–53 mbsf) consists of soft pelagic clays,
cherts, and interbedded sandstones and silty claystones that contain
significant amounts of red clay. The underlying unit (53–510 mbsf) is
composed of a thick section of interbedded turbidites composed of de-
trital volcaniclastic material and traces of reef detritus from the Kyushu-
Palau Ridge, which range in size from coarse sandstones and breccia
through silty claystone to claystone. The individual turbidite layers
range from tens of meters to a few millimeters in thickness and tend to
decrease in thickness and grain size downsection (Figs. F21, F22), re-
flecting a gradual change from high-energy to low-energy deposition.
The basal 20–30 m of the unit consists of interbedded turbidites and
reddish tan to chocolate-brown claystones deposited in a quiet marine
environment. One of the most striking features of the entire sediment
section at Site 1201 is the color of the turbidites, which range from dark
gray to dark greenish gray in the upper 240 m of the unit, where the
volcaniclastics are (relatively) fresh, and then range from deep green to
gray-green to the base of the unit. Thin section and XRD analyses show
that these changes are related to progressive alteration with depth, in-
cluding the devitrification of glass, the replacement of the calcic cores
of plagioclase by clays, and the infilling of voids and vesicles by clays
and zeolites in the upper part of the unit, and the wholesale replace-
ment of volcaniclastic material in the lower part of the unit by smectite,
chlorite, and zeolites (chabazite, erionite, heulandite/clinoptilolite, and
analcime/wairakite) during diagenesis.

The composition of the interstitial water at Site 1201 is very unusual
for deep-sea sediments and reflects the profound diagenesis that has oc-
curred in the turbidites in the lower part of the section. The most strik-
ing feature is an extremely large increase in pH, Ca, and chlorinity with
depth in the pore water; whereas seawater is mainly a sodium chloride
solution, the altered seawater near the base of the sediments is mainly a
calcium chloride solution (Fig. F23). Calcium increases to 270 mmol/
kg, 27 times the concentration in seawater, by leaching from the volca-

Seafloor
(5721 mbsl)

54.0 mbsf

Turbidites 

Basalt

Pelagic silty clay

512.0 mbsf

Casing hanger body

4.5-in through casing

Centralizer

Centralizing ring
683-mm ID

J-tool to disconnect
from drill string

Data control unit (MEG-195)

Battery/recorder unit (PAT)
(top) 3200-mm diameter × 2640-mm height
(leg) 3658-mm diameter

ROV platform (5.05 m)

Reentry cone

Reentry cone base

Top of reentry cone (2.41 m)

Top of riser/hanger (8.1 m)

Bottom of 16-in casing (39.0 mbsf)

Bottom of stinger (568.7 mbsf)
Rat hole
Bottom of 9.875-in hole (580.0 mbsf)

Centralizer

Cement

Bottom of lower seismometer (564.2 mbsf)
Bottom of upper seismometer (561.2 mbsf)
Bottom of 4.5-in casing (558.4 mbsf)

Bottom of 14.75-in rat hole (543.0 mbsf)
Bottom of 10.75-in casing (527.0 mbsf)

Cement level in 10.75-in casing 
(384.4 mbsf)

Circulating sub cement level in
4.5-in casing (278.4 mbsf)

16-in casing

10.75-in casing

9.875-in open hole

Landing point (0.3 mbsf)

F18. Configuration of reentry 
cone, casing, and ION seismic ob-
servatory components, p. 50.

3.658 m

3.200 m

2.
64

0 
m

LBU 1

SAM frame

Top plate
(ROV platform)

UMC cable

LBU 2

F19. ROV landing platform, p. 51.

e.
 P

lio
.

to
 l.

 O
lig

o.
la

te
 O

lig
oc

en
e 

to
 la

te
 E

oc
en

e

B
as

al
tic

 
ba

se
m

en
t

+

++

+

+

+

+ +

+

+ +

+

+ +

+

c s sg
0

50

100

150

200

250

300

350

400

450

500

550

600

D
ep

th
 (

m
bs

f)

a*
green red

(cps)

IA

IIA

IIA

IIA

Color
reflectanceAge

Lith.
unit

Graphic
lithology

log
Natural

gamma radiation Mineralogy

Q
ua

rtz
Pl

ag
io

cl
as

e
Py

ro
xe

ne
Ex

pa
nd

ab
le

 c
la

y 
m

in
er

al
s

Ill
ite

W
el

l-c
ry

st
al

liz
ed

 s
m

ec
tit

e
Ph

illi
ps

ite

H
eu

la
nd

ite
/C

lin
op

til
ol

ite

An
al

ci
m

e/
W

ai
ra

ki
te

Er
io

ni
te

C
ha

ba
zi

te
G

yp
su

m

-10 0 10 0 10 20

IIB

IC
IB

20 30

F20. Lithology, color, natural 
gamma count, and mineralogy vs. 
depth and age, p. 52.

l. 
P

lio
ce

ne
to

 l.
 O

lig
o.

la
te

 O
lig

oc
en

e
to

 la
te

 E
oc

en
e

IA

IIA

IB

B
as

al
tic

 
ba

se
m

en
t

IIA

+

++

+

+

+

+ +

+

+ +

+

+ +

+

c s s g

IIA

0 2000

D
ep

th
 (

m
bs

f)

Magnetic susceptibility
(× 10-5 SI)

1 2 3
Density
(g/cm3)

0 10 20 30
NGR
(cps)

A B C Age
Lith.
unit

Graphic
lithology

log

0

100

200

300

400

500

600

IIB

IC

F21. Laboratory multisensor track 
measurements, p. 53.



SHIPBOARD SCIENTIFIC PARTY
CHAPTER 1, LEG 195 SUMMARY 21
niclastic material. Similarly, chlorinity increases to 645 mmol/kg, 20%
higher than seawater values, due to the removal of water during the for-
mation of hydrous minerals such as clays and zeolites. The gain in Ca is
balanced by the removal of 70% of the Na (to 140 mmol/kg) and the
loss of nearly all of the Mg and K from the seawater during the forma-
tion of clay, smectite, and zeolites. Sulfate decreases as well, from 28 to
15 mmol/kg, by the precipitation of gypsum in response to the elevated
Ca concentration. Alkalinity falls from the seawater value of 2.4 to <1
meq/kg as it is consumed by the precipitation of authigenic minerals.
The rise in pH to 10.0 from the seawater value of 8.1 also reflects ex-
treme alteration. Many of the pore water gradients in the top of the tur-
bidite section can only be supported by ongoing reactions, which is
consistent with the fact that the volcaniclastics at this level are not yet
completely altered. Deeper in the section, however, many of the
geochemical gradients approach zero, implying that equilibrium has
been achieved and that the geochemistry observed is that of “fossil”
pore water.

To reconstruct the geological history of the site and determine the
timing of diagenesis, it is necessary to look at the microfossil and paleo-
magnetic record. The topmost (0–29 mbsf) and lowermost (462–509
mbsf) sections are barren of nannofossils, but moderately to poorly pre-
served nannofossils in the middle section allowed us to recognize six
biozones spanning Zones NP19/NP20 to NP25 (Fig. F24). The turbidites
between 53 and 462 mbsf represent an expanded sequence of late
Eocene to early Oligocene age. Separated by a short hiatus and lying on
top of the turbidites is a 25-m sequence of upper Oligocene (Zone
NP25) red claystone. Compared to DSDP drilling results at Sites 290 and
447 (Karig, Ingle, et al., 1975; Kroenke, Scott, et al., 1981), the upper
Eocene sediments (>34.3 Ma) recovered at this site are the oldest so far
identified on the sedimentary apron of the Kyushu-Palau Ridge. Be-
cause the 47-m interval overlying basement at the site could not be
dated on board ship, this is clearly a minimum age; dating of this criti-
cal interval must await the results of shore-based radiolarian studies.

Preliminary interpretation of the magnetic inclination record identi-
fied 64 reversals of the geomagnetic timescale in the sediment section.
Although the Pliocene–Pleistocene section (0–5 m.y.) is apparently
missing, the barren pelagic sediments in the top 29 mbsf provided an
excellent record from the Thvera Subchron (C3n.4n) through the late
and middle Miocene polarity intervals to Subchron C5Bn.1n or close to
the base of the middle Miocene (Fig. F25). Major unconformities are
present between 14.8 and 24.1 Ma and in the top section of Biozone
NP24 at ~25–30 Ma. Surprisingly, the magnetic inclination record in
the turbidites between 100 and 500 mbsf defines several long normal
and reversed polarity chrons (C12n–C16n.2n) that are well constrained
by biostratigraphic ages. The combined biostratigraphic and paleomag-
netic results show that the sedimentation rates were moderate (35 m/
m.y.) in the late Eocene, then very high (109 m/m.y.) in late Eocene–
early Oligocene time, when the turbidites were being deposited, and
then decreased to very low values (3 m/m.y.) during the Miocene, when
the pelagic sediments at the top of the section were being deposited
(Fig. F26).

Although the age of the basement could not be determined aboard
ship, its composition and provenance are clear. The 90 m of basement
drilled at Site 1201 consists of altered pillow basalts having a composi-
tion that is transitional between that of arc tholeiites and MORB and
backarc basin basalts (Fig. F27). Geochemical and thin section analysis
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shows that the basalts have been strongly weathered, especially at the
contact with the overlying sediments, where they show significant Na
uptake and depletion in Ca. Hyaloclastites in the section have been
palagonitized and altered to smectite, and interpillow sediments recov-
ered from within the upper 10 m of basement contain marine microfos-
sils, indicating eruption in a marine environment. Magnetic inclina-
tions in the basaltic basement are shallow and indicate a position of the
Philippine plate near the equator, at ~7° paleolatitude, during the
Eocene.

From the data provided above, it is evident that the basement at Site
1201 formed near the equator by submarine eruption during the
Eocene before 34.3 Ma. The composition of the basalts, which are tran-
sitional between island arc tholeiites and MORB or backarc basin ba-
salts, suggests they erupted in an arc or backarc setting. The absence of
calcareous nannofossils and the presence of siliceous microfossils in the
interpillow sediments and pelagic sediments immediately overlying the
basement suggests that the basement formed in a deep water environ-
ment below the carbonate compensation depth (CCD) (Fig. F28).

Beginning in the late Eocene and continuing into the early Oli-
gocene (from ~35 to 30 Ma), pelagic sedimentation at the site became
mixed with, and was finally overwhelmed by, increasingly thick, coarse,
and energetic turbidites composed of arc-derived volcaniclastics and
reef detritus. The composition and timing of the turbidites is consistent
with a source to the east in the Kyushu-Palau Ridge, which was an ac-
tive arc from ~48 to 35 Ma (Arculus et al., 1995) and only began to sub-
side at ~28 Ma (Klein and Kobayashi, 1980). The presence of scoria and
rounded lithic clasts in the volcaniclastic breccia at Site 1201 is consis-
tent with subaerial erosion, but the absence of plutonic fragments indi-
cates that the ridge remained undissected (Dickinson, 1985; Valloni,
1985). The upward coarsening of the turbidites can be attributed to
many possible causes, including changes in arc elevation and erosion,
sediment supply, proximity to source, tectonics, sea level, and slope gra-
dient. Alteration of the volcaniclastics would have commenced imme-
diately after deposition and is continuing to the present in the upper
part of the section, but diagenesis would only have begun when the tur-
bidite section became sufficiently thick for the temperature in the lower
part of the section to reach 85° to 125°C (Fisher and Schminke, 1984).

Between the late Oligocene and early Pliocene, the Kyushu-Palau
Ridge subsided, the deposition of turbidites came to an end, and pelagic
sedimentation resumed at Site 1201 as the Parece Vela Basin opened
and arc volcanism moved eastward relative to the Kyushu-Palau Ridge
in response to plate reorganization. Finally, even pelagic sedimentation
ceased at ~5 Ma, presumably in response to bottom currents caused by a
change in bottom-water circulation.

SITE 1202: KUROSHIO CURRENT

The Kuroshio (Black) Current is the biggest western boundary surface
current in the western Pacific. Because of its high speed (2.7–3.6 km/
hr), great thickness (1.0 km) and width (150–200 km), and high temper-
ature (28°–29°C in summer and 22°–25°C in winter), it plays an impor-
tant role in the meridional transport of heat, mass, momentum, and
moisture from the western Pacific warm pool to high latitudes in the
north Pacific. Although its role in the Pacific is as important as that of
the Gulf Stream in the North Atlantic, almost nothing has been learned
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about its evolution during the past 32 yr of drilling by DSDP and ODP
because there are almost no locations beneath the Kuroshio Current
where a deep-sea sedimentary section with high sedimentation rates
can contain well-preserved calcareous microfossils. Because the CCD is
shallow in the western Pacific (<3500 m) and the water depth is great
(generally >4000 m), foraminifers and calcareous nannofossils are rarely
preserved. Conditions appear to be ideal for obtaining a such a section,
however, in the southern Okinawa Trough. As the Kuroshio Current
passes between the eastern side of the island of Taiwan and the south-
ernmost part of the Ryukyu Island arc, it is deflected upward when it
approaches the Ilan Ridge and then flows northeastward in the Oki-
nawa Trough (Ono et al., 1987; Chen et al., 1992) (Fig. F29). The seaf-
loor in the Okinawa Trough lies above the CCD, and sedimentation
rates are high because of terrigenous input from the East China Sea
shelf and the island of Taiwan (Boggs et al., 1979; Lin and Chen, 1983).
Site 1202 was accordingly proposed on the southern slope of the Oki-
nawa Trough to obtain a high-resolution record of the history of the
Kuroshio Current during the Quaternary.

Geologic Setting

The Okinawa Trough, which extends from southwestern Kyushu,
Japan, to the northeastern side of the island of Taiwan, is an active, incip-
ient, intracontinental backarc basin formed behind the Ryukyu arc-
trench system in the western Pacific (Lee et al., 1980; Letouzey and
Kimura, 1985; Sibuet et al., 1987). The trough was formed by extension
within continental lithosphere already intruded by arc volcanism (Uyeda,
1977; Sibuet and Hsu, 1997). Although there is considerable controversy
about the age of early rifting, most researchers agree that the most recent
phases of extension have taken place since 2 Ma (Sibuet et al., 1998). The
southernmost part of the Okinawa Trough is characterized as a rifting ba-
sin with incipient arc volcanism opening in the middle of a foundered
orogen caused by previous arc-continent collision (Teng, 1996).

The recent phase of extension of the Okinawa Trough occurred in
the late Pleistocene (~0.1 Ma) (Furukawa et al., 1991), based on seismic
correlation with drilling stratigraphy (Tsuburaya and Sata, 1985), but
the exact timing of this recent phase of extension in the area of the site
is unknown. The extension is characterized by normal faulting on both
sides of the trough. The amount of extension during this recent phase
has been estimated to be 5 km, both in the middle and the southwest
end of the Okinawa Trough (Sibuet et al., 1995, 1998). Based on the co-
incidence in timing between the development of the sedimentary ba-
sins in the Okinawa Trough (Kimura, 1985) and the uplift of the
Ryukyu arc at the Pliocene/Pleistocene boundary (Ujiie, 1980), Sibuet et
al. (1998) concluded that the penultimate phase of rifting, including
subsidence and block faulting along the central axis of the trough,
started at ~2 Ma. The total amount of extension in the area is ~30 km.

It has been suggested that the Okinawa Trough changed from an
open-sea environment to a semienclosed marginal basin because of a
120-m drop in sea level (Fairbanks, 1989) during the last glacial maxi-
mum (Ujiie et al., 1991). Consequently, the Kuroshio Current may have
been located on the trench side of the Ryukyu arc until ~7.5 ka during
the Holocene (Ujiie et al., 1991; Ahagon et al., 1993; Shieh and Chen,
1995). Glacial–interglacial sea level fluctuations are likely to have
caused significant changes in the configuration and distribution of con-
tinental shelves in the region, particularly in the South China Sea, and
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these changes must have caused dramatic hydrographic changes and
sediment redistribution in the Okinawa Trough.

The southern Okinawa Trough is currently an area of high sedimen-
tation because of the enormous terrigenous sediment supply from the
East China shelf and the island of Taiwan. Modern sediments in this
area consist mainly of clay- to silt-sized terrigenous sediments with a
moderate (~20%) biogenic carbonate content (Chen et al., 1992; Lou
and Chen, 1996). Sediment trap studies in the southern Okinawa
Trough (Hung et al., 1999) indicate that the abundance of suspended
particulate material decreases with increasing distance from the East
Asian continent but increases with depth, implying effective resuspen-
sion and lateral transport across the area. Studies of short piston cores
(Lou and Chen, 1996; Shieh et al., 1997; Ujiie and Ujiie, 1999) taken
from the area suggest that sedimentation rates during the Holocene
were ~20 cm/ky.

Extensive geophysical surveys conducted in the area (Sibuet et al.,
1998; Liu et al., 1998) show that the trough is marked by a series of nor-
mal faults dipping toward the center and a series of volcanic edifices
and hydrothermal vents piercing through the sedimentary layer. Based
on low interval velocities (<2.0 km/s) determined from the analysis of
seismic data, a prominent series of reflectors is observed from 250 to
350 mbsf (Fig. F30). This prominent reflection has been suggested to be
the unconformity marking the onset of the most recent phase of exten-
sion of the Southern Okinawa Trough (Hsu, 1999). Site 1202 was pro-
posed to penetrate this sequence to a depth of ~410 mbsf, not only to
study the paleoceanography of the Kuroshio Current but to provide
constraints on the timing of the most recent phase of extension in the
Okinawa Trough.

Scientific Objectives

The primary objective of drilling at Site 1202 was to obtain a high-
resolution record of the paleoceanographic history of the Kuroshio Cur-
rent. Such a record might make it possible to identify long-term pat-
terns of climate change associated with the western Pacific boundary
current during the past 1.5 m.y. For example, the Kuroshio Current
passes over the Ryukyu arc and into the Okinawa Trough before turning
northeast and continuing toward Japan, but changes in sea level associ-
ated with glacial–interglacial cycles could well redirect the Kuroshio
Current outside the arc and isolate the Okinawa Trough on a cyclic ba-
sis. Changes in sedimentation caused by such deflections, coupled with
periodic exposure of the continental shelf to the northwest during low
sea level stands, should be easily detectable by drilling at Site 1202.

We also hoped that drilling at Site 1202 would enable us to detect the
effects of orbital forcing in the Pacific during the mid-Pleistocene (~0.7
Ma), when the Earth’s climate system switched from a regime of domi-
nant 41-k.y. cycles to 100-k.y. cycles. Oxygen isotope measurements on
foraminifers from Site 1202, for example, should reflect surface temper-
ature cycles over a large area of the western equatorial Pacific because
the Kuroshio Current is a composite current assembled from numerous
smaller currents before it reaches the site.

We also hoped to document the temporal and spatial variability of
millenial climate changes in the Kuroshio Current and the catchment
basins that deliver sediments to the Okinawa Trough. These changes
should be reflected not only in the oxygen isotopic composition of mi-
crofossils but in the grain size and composition of sediments from some
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of the largest river systems in east Asia, including the Yangtze, which
rises in Tibet and samples much of southern China.

Finally, we hoped to examine long-term changes in El Niño/La Niña–
style climate oscillations in the low-latitude Pacific by comparing the
Kuroshio Current record to other Pacific ODP records (Andreasen and
Ravelo, 1997; Clement et al., 1999).

Drilling Strategy and Operations

After arriving on station and lowering the pipe, we planned to triple–
APC core the sediment section to refusal, which was estimated to be at
~250 mbsf, to obtain overlapping, and thus complete, coverage for
high-resolution paleoenvironmental studies. If time allowed, we
planned to deepen the third hole to 410 mbsf using the XCB. We then
hoped to log the open hole using the triple combo and the FMS-sonic
tools to provide a quantitative basis for comparison with the multisen-
sor track (MST) data, which could be used to reconstruct a continuous
sediment section for the site.

The transit to Site 1202 (proposed Site KS-1) was made in good time
with fair seas and favorable currents. The 784-nmi distance was covered
in 64.9 hr at an average speed of 12.1 kt. At 0254 hr on the morning of
28 April, the vessel arrived at 24°48.24′N, 122°30.00′E, the coordinates
for the drilling location. The crew began lowering thrusters and hydro-
phones, and at 0515 hr on 28 April the positioning beacon was de-
ployed.

A standard APC/XCB bottom-hole assembly (BHA), including a lock-
able float valve (LFV) to allow wireline logging of the deepest hole of
the site, was made up. The drill string was tripped to the bottom, and
Hole 1202A was spudded at 0810 hr. APC coring continued through
Core 195-1202A-9H to a depth of 83.1 mbsf (Table T1) when the APC
failed to stroke out. Core 195-1202A-10H fully stroked; however, Cores
11H and 12H did not fully advance. Advance by recovery was used for
the two incomplete cores in the hope that the hard layer would be lim-
ited in thickness and piston coring would once again become viable.
APC refusal was finally accepted when Core 195-1202A-13H at 119.5
mbsf had not only failed to scope, but the core liner failed at the mid-
point of the barrel. Core orientation using the Tensor tool was initiated
with Core 195-1202A-4H and continued through Core 13H. Tempera-
ture measurements were taken on Cores 195-1202A-4H, 7H, 10H, and
13H using the Adara temperature tool. Two of the four temperature
measurements were good (see “Physical Properties,” p. 11, in the “Site
1202” chapter). The developmental APC-methane tool was deployed on
Core 195-1202A-4H and then on Cores 7H through 13H. All runs were
successful in acquiring data. Hole 1202A officially ended with the clear-
ing of the seafloor at 1900 hr on 28 April.

The vessel was offset 15 m to the east, and Hole 1202B was spudded
at 1935 hr on 28 April. APC coring continued through Core 195-1202B-
13H to a depth of 111.6 mbsf (Table T1) before APC refusal was defined
by two successive incomplete strokes on Cores 195-1202B-12H and
13H. Because the ultimate depth objective at this site was 410 mbsf, we
decided to cut three XCB cores before terminating the hole to obtain an
idea about penetration rates, core recovery, and quality. Coring contin-
ued with the XCB through Core 195-1202B-16X to a depth of 140.5
mbsf. The drill string was pulled clear of the seafloor, officially ending
Hole 1202B at 0445 hr on 29 April.
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The ship was offset 15 m to the east, and Hole 1202C was spudded at
0540 hr on 29 April. APC coring continued through Core 195-1202C-
11H to a depth of 97.5 mbsf (Table T1), where APC refusal was encoun-
tered as defined by three consecutive incomplete strokes. Core orienta-
tion using the Tensor tool was initiated with Core 195-1202C-4H and
continued through Core 11H. The drill string was pulled clear of the
seafloor, officially ending Hole 1202C at 1215 hr on 29 April.

For the third time, the ship was offset 15 m to the east, and Hole
1202D was spudded with the APC at 1245 hr on 29 April. Recovery of
the first core was only 15 cm. APC coring continued in this hole
through Core 195-1202D-9H to a depth of 76.2 mbsf (Table T1), when
the first core did not achieve full stroke. Coring with the XCB pro-
ceeded through Core 195-1202D-32X to a depth of 297.4 mbsf, where a
short wiper trip was made to 221.3 mbsf, above an area of poor recov-
ery. The wiper trip was uneventful, and coring continued through Core
195-1202-44X to a depth of 410.0 mbsf, the approved target depth for
Site 1202.

In preparation for logging, a wiper trip was initiated at 1930 hr on 30
April and reached the logging depth of 80.0 mbsf without incident. The
hole was displaced with 150 bbl of sepiolite logging mud, and the bit
was pulled back to a logging depth of 80.0 mbsf.

The triple combo tool string was made up with the Lamont Doherty
Earth Observatory (LDEO) temperature/acceleration/pressure (TAP)
tool. A nuclear source was not incorporated because the loss of density
data did not outweigh the risk of losing the source in disputed waters
under hostile current conditions. Throughout operations at the site, the
Kuroshio Current was strong. Heavy pipe vibration was experienced
continually, while the currents varied cyclically between 2.6 and nearly
4.0 kt. The first tool string was deployed to a depth of ~215 meters be-
low rig floor. At that point, the logging engineer reported losing all
power to the logging tools. After bringing the tool string to the surface,
the tools showed several loose connections caused by the current-
induced drill sting vibrations. All joints were retightened and taped
with duct tape. The tool string was once again deployed inside the drill
pipe; however, the winch operator only reached 72 mbsf before losing
weight with the logging line, as if setting down on an obstruction.
Upon recovery, the connections were once again found to be loose and
the lower portion of the TAP tool was missing.

At 0430 hr, the circulating head was rigged up and the coring line
was run in the hole to determine if the TAP tool was lodged in the drill
string. Results were inconclusive. We decided to abandon further wire-
line logging efforts because of the intensity of the current-induced drill
string vibration. The drill string was pulled clear of the seafloor by 0730
hr. By 1100 hr, preparations were under way to secure and clean the
ship for transit into port. The ~55-nmi transit to Keelung, Taiwan, was
made at reduced speed for an 0815-hr arrival at the pilot station on 2
May 2001. The ship was dockside at 0904 hr, ending Leg 195.

Principal Results

The principal objective at Site 1202 was to obtain a continuous sedi-
ment section deposited beneath the Kuroshio Current that would allow
high-resolution studies of climate change in East Asia associated with
late Quaternary glaciation and deglaciation cycles. The strategy adopted
was to drill at an extremely high sedimentation rate site in relatively
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shallow water above the CCD in the Okinawa Trough where calcareous
microfossils would be preserved in an expanded section.

The objective was met with the recovery of a 410-m section of dark
grayish green, bioturbated clayey silt with abundant sandy turbidites
between 220 and 280 mbsf and occasional thin (<1 cm) turbidites scat-
tered throughout the rest of the section. The sediments were rich in or-
ganic carbon and charged with H2S. Smear slide analysis shows that the
nonbiogenic component of the sediments is composed predominantly
of quartz, feldspar, and detrital carbonate, whereas the turbidites also
contain micas, heavy minerals (green hornblende, tourmaline, epidote,
and zircon), and opaques. Surprisingly, no tephra layers were observed
and glass shards are rare. Although the site is located in the Okinawa
Trough, heat flow values (0.040 W/m2) were slightly lower than the glo-
bal average and no evidence of diagenesis was observed.

As anticipated, the preservation of calcareous microfossils was excel-
lent, with planktonic and benthic foraminifers and calcareous nanno-
fossils present in small amounts (<1% by volume) throughout the sec-
tion, except in the turbidites, where they are abundant. Also present,
especially in the turbidites, are diatoms, ostracodes, radiolarians,
sponge spicules, the plates and spines of echinoderms, fragments of
molluscs and pteropods, copepod remains, and fragments of bark,
roots, and leaves, the latter indicating rapid burial and high sedimenta-
tion rates.

Despite the excellent preservation of microfossils, shipboard determi-
nation of the age of the section proved difficult. The presence of Emil-
iania huxleyi throughout the section suggests that the section is very
young (<0.26 Ma, or latest Quaternary) and the absence of pink G. ruber
indicates that the entire section is younger than 127 ka. This is consis-
tent with shipboard paleomagnetic inclination data, which shows that
the entire 410-m section lies within the Brunhes C1n normal polarity
chron and is thus <0.78 Ma in age. Several excursions are seen in the
data, including one at 110 m, which may correspond to the Laschamps
event (40–45 ka), but given the absence of biostratigraphic markers and
reversals, an accurate age determination for the section will have to be
based on paleointensities.

If the age of the section is <127 ka, as suggested by the absence of
pink G. ruber, then the sedimentation rate at the site was at least 3 m/
k.y., one of the highest rates ever observed in the ocean basins for fine-
grained, fossiliferous sediments. Given the relatively low biogenic con-
tent of the sediments, this requires a large terrigenous source. We infer
that the section is composed of reworked sediments from the Chinese
mainland that were delivered to the East China shelf by the Yangtze
River. The presence of mica and other metamorphic minerals in the
coarse fraction of the turbidites suggests that an additional component
is derived from nearby metamorphic terrains on the island of Taiwan.

If this initial interpretation is borne out, then the section recovered
at Site 1202 is almost ideal for studying climate change associated with
glaciation and deglaciation in East Asia during the Holocene and latest
Pleistocene. The section is relatively homogeneous; it is continuous, at
least in the top 130 m where it was APC cored; it contains excellent pa-
leomagnetic, lithologic, and biogenic proxies for climate; and it dis-
plays extraordinarily high resolution (<100 yr, assuming bioturbation
to 20 cm). In principle, this resolution should be sufficient to study the
influence of climate on the rise of Chinese civilization.
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Figure F1. Location map showing sites drilled during Leg 195. The geochemical observatory was installed
at Site 1200, and the International Ocean Network (ION) seismic observatory was installed at Site 1201. Site
1202 was drilled to study the history of the Kuroshio Current.
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Figure F2. Bathymetric map of the southern Mariana forearc (250-m contour intervals) showing locations
of all forearc seamounts sampled to date. Site 1200 was drilled on South Chamorro Seamount during Leg
195.
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Figure F4. HMR-1 side-scan imagery of South Chamorro Seamount showing the locations of six-channel
seismic reflection profiles shown in Figure F5, p. 37. Contour intervals are given in meters.
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Figure F6. Locations of Holes 1200A–1200F drilled on the summit knoll of South Chamorro Seamount.
Also shown is the location of the seafloor television survey conducted before drilling. Contours are given
in meters.
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Figure F7. Casing configuration for the geochemical observatory installed in Hole 1200C on South
Chamorro Seamount.
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Figure F8. Geochemical observatory (CORK) configuration in Hole 1200C, South Chamorro Seamount.
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Figure F9. Close-up photograph of serpentine mud breccia from South Chamorro Seamount (interval 195-
1200E-10H-2, 83–113 cm).
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Figure F10. Photomicrograph of glaucophane (Gl) schist in serpentine mud (Sample 195-1200F-1H-4, 34–
36 cm).

Gl

0.25 mm



SHIPBOARD SCIENTIFIC PARTY
CHAPTER 1, LEG 195 SUMMARY 43
Figure F11. Photomicrograph of tremolite (Tr)-rich chlorite (Chl) schist in serpentine mud (Sample 195-
1200F-1H-4, 34–36 cm).

0.5 mm

Chl

Tr



SHIPBOARD SCIENTIFIC PARTY
CHAPTER 1, LEG 195 SUMMARY 44
Figure F12. (A) Al2O3 and (B) Mg2+/(Mg2++Fe2+) diagrams for Mariana forearc peridotites, showing degrees
of partial melting. Conical and Torishima Forearc Seamount data are from Ishii et al. (1992) and Parkinson
and Pearce (1998).
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Figure F14. Location of seismic station coverage in the northwest Pacific region. At least five major plates
with consuming boundaries interact in the northwest Pacific, causing subduction, backarc spreading, slab
collisions, terrane accretion, and island arc development. Blue and yellow circles = land seismic stations.
Orange circles = International Ocean Network (ION) seafloor observatories JT-1 and JT-2 (Japan Trench),
WP-2 (northwest Pacific), and Site 1201 (this site). OHP = Ocean Hemisphere Network Project, IRIS = Incor-
porated Research Institutions for Seismology. TJN = Taejon, South Korea; INU = Inuyama, Japan; ISG = Ish-
igakijima, Japan; OGS = Chichijima, Japan; MCSJ = Minami Torishima, Japan; BAG = Baguio, Philippines;
PATS = Pohnpei, Micronesia; JAY = Jayapura, Indonesia; PMG = Port Moresby, Papua New Guinea.
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Figure F15. Location map showing DSDP Sites 290, 294, 295, and 447 and ODP Site 1201 in the Philippine
Sea. Also shown are magnetic lineations from Hilde and Lee (1984). Basement ages in parentheses. The
Central Basin Fault (the former spreading center) is shown as a series of heavy solid lines with offsets along
transform faults.
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Figure F17. Borehole seismometer instrument package deployed in Hole 1201D. BIA = borehole instrument
assembly, OBH = ocean borehole seismometer.
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Figure F18. Configuration of reentry cone, casing, and International Ocean Network seismic observatory
components at Site 1201. MEG = multiple-access expandable gateway, ROV = remotely operated vehicle,
PAT = power access terminal.
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Figure F19. Remotely operated vehicle (ROV) landing platform installed in Hole 1201D. LBU = lithium bat-
tery unit, SAM = storage acquisition module, UMC = underwater mateable connector.
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Figure F20. Lithology, color, natural gamma count, and mineralogy vs. depth and age at Site 1201. Note
the increase in zeolites with depth in the turbidites. In the graphic lithology log, c = clay, s = silt, s = sand,
g = gravel. a* = color reflectance parameter.
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Figure F21. Laboratory multisensor track measurements of (A) magnetic susceptibility, (B) density, and
(C) natural gamma ray emission vs. depth at Site 1201. In the graphic lithology log, c = clay, s = silt, s =
sand, g = gravel.
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Figure F22. Logging results from Hole 1201D. Logging Units 1a–1d correspond to coarse turbidite units. In
the graphic lithology log, c = clay, s = silt, s = sand, g = gravel. * = spurious data.
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Figure F24. Nannofossil ranges at Site 1201. The upper 25 m and the lower 45 m of the section are barren
except for radiolarians and fish teeth. In the graphic lithology log, c = clay, s = silt, s = sand, g = gravel.
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Figure F25. Continuous magnetic inclination and declination record in pelagic sediments at Site 1201
(large dots correspond to discrete samples). Also shown is the best fit to the late Oligocene through late
Miocene geomagnetic polarity timescale based on paleontological markers from the site. In the polarity col-
umn, black bands = normal and white bands = reversed polarity.
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Figure F27. V vs. Ti tectonic discrimination diagram for Site 1201 basalts. The basalts at Site 1201 are tran-
sitional between arc tholeiites and mid-ocean-ridge basalts (MORB) or backarc island basalts (BABB). OIB =
ocean island basalt.
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Figure F28. Geological interpretation of the sediment and basement section at Site 1201.
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Figure F29. Location of Site 1202 in the Okinawa Trough. The seafloor in the trough under the Kuroshio
Current lies above the carbonate compensation depth. Diverging arrows indicate zones of upwelling. Con-
tour interval = 200 m.
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Figure F30. North-south seismic profile EW95091 at Site 1202.
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Table T1. Coring summary, Leg 195. 

Note: RCB = rotary core barrel, APC = advanced hydraulic piston corer, XCB = extended core barrel.

Hole Latitude Longitude Coring technique

Water
depth
(mbsl)

Interval
cored
(m)

Core
recovered

(m)

Core
recovery

(%)

1200A 13°47.0053’N 146°0.1854’E RCB 2910 147.2 13.8 9.4
1200B 13°47.0039’N 146°0.1981’E RCB with center bit 2911 98.0 0.0 0.0
1200C 13°47.0724’N 146°0.1717’E Rotary drilled for casing, reentry cone 2932 266.0 0.0 0.0
1200D 13°47.0043’N 146°0.1715’E APC/XCB with center bit 2931 21.9 22.0 100.5
1200E 13°47.0043’N 146°0.1858’E APC 2911 54.4 38.1 70.0
1200F 13°47.0154’N 146°0.1860’E APC 2911 16.3 16.3 99.9

1201A 19°17.8830’N 135°5.9501’E APC 5710 1.6 1.5 93.1
1201B 19°17.8788’N 135°5.9506’E APC/XCB 5710 90.3 65.9 73.0
1201C 19°17.8829’N 135°5.9408’E APC 5710 48.1 49.5 102.9
1201D 19°17.8165’N 135°5.9519’E RCB 5709 519.6 406.8 78.3
1201E 19°17.8542’N 135°5.9491’E Rotary drilled for casing, reentry cone 5710 580.0 0.0 0.0

1202A 24°48.2449’N 122°30.0002’E APC 1274 119.5 127.14 106.4
1202B 24°48.2445’N 122°30.0077’E APC/XCB 1274 140.5 143.28 102.0
1202C 24°48.2428’N 122°30.0167’E APC/XCB 1274 97.5 100.56 105.2
1202D 24°48.2456’N 122°30.0259’E APC/XCB 1274 410.0 321.62 78.4
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